svZeroDSolver
|
Levenberg-Marquardt optimization class. More...
#include <LevenbergMarquardtOptimizer.h>
Public Member Functions | |
LevenbergMarquardtOptimizer (Model *model, int num_obs, int num_params, double lambda0, double tol_grad, double tol_inc, int max_iter) | |
Construct a new LevenbergMarquardtOptimizer object. | |
Eigen::Matrix< double, Eigen::Dynamic, 1 > | run (Eigen::Matrix< double, Eigen::Dynamic, 1 > alpha, std::vector< std::vector< double > > &y_obs, std::vector< std::vector< double > > &dy_obs) |
Run the optimization algorithm. | |
Levenberg-Marquardt optimization class.
The 0D residual (assuming no time-dependency in parameters) is
with solution vector
The least squares problem can be formulated as
with given solution vectors
wherein the increment
The algorithm terminates when the following tolerance thresholds are reached
The Jacobian is derived from the residual as
LevenbergMarquardtOptimizer::LevenbergMarquardtOptimizer | ( | Model * | model, |
int | num_obs, | ||
int | num_params, | ||
double | lambda0, | ||
double | tol_grad, | ||
double | tol_inc, | ||
int | max_iter ) |
Construct a new LevenbergMarquardtOptimizer object.
model | The 0D model |
num_obs | Number of observations in optimization |
num_params | Number of parameters in optimization |
lambda0 | Initial damping factor |
tol_grad | Gradient tolerance |
tol_inc | Parameter increment tolerance |
max_iter | Maximum iterations |
Eigen::Matrix< double, Eigen::Dynamic, 1 > LevenbergMarquardtOptimizer::run | ( | Eigen::Matrix< double, Eigen::Dynamic, 1 > | alpha, |
std::vector< std::vector< double > > & | y_obs, | ||
std::vector< std::vector< double > > & | dy_obs ) |
Run the optimization algorithm.
alpha | Initial parameter vector alpha |
y_obs | Matrix (num_obs x n) with all observations for y |
dy_obs | Matrix (num_obs x n) with all observations for dy |